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Abstract. We prove that the probability of finding a scattered quantum-mechanical particle at
large times in a truncated cone is identical with the scattered flux, integrated over time, across
a distant spherical surface subtending this cone. The theory applies to potentials with arbitrary
local singularities and decaying faster thanr−2/3 at large distances.

1. Introduction

The definition of scattering cross sections in the Hilbert space formulation of quantum
scattering theory is based on Dollard’s scattering into cones formula (see e.g. [1, 2]). This
formula expresses the probability of finding the scattered particles in the far future in a
given cone in terms of the scattering operatorS. As mentioned in [3], the relevance of such
arguments relies on the assumption that the probability of finding a scattered particle at large
times in some cone is identical with the scattered flux, integrated over time, across a distant
surface subtending this cone. The validity of this assumption has recently been established
for free particles and for scattering by short-range potentials, see [4–6]. The method of
estimating the scattered flux applied in [6] does not, however, cover Coulomb potentials,
and it is the purpose of the present paper to introduce a different approach which allows
us to treat also Coulomb and other long-range potentials in two-body scattering. Moreover
the theory will cover potentials with strong local singularities. The extension of the results
to N -body systems will be communicated elsewhere.

In section 2 we introduce the mathematical notions needed to describe the flux across
certain two-dimensional surfaces embedded inR3. The divergence theorem can be used to
relate the flux across the boundary of a (reasonably shaped) truncated cone to the probability
of presence in that cone (section 3); if the flux across the lateral surface of the cone
is sufficiently small at large times, one can then deduce the validity of the assumption
mentioned above. Details, together with precise general conditions on the flux, will be
given in section 4. In section 5 we use propagation estimates to prove that these conditions
on the flux are satisfied for Hamiltonians with smooth potentials (including certain long-
range potentials), and in section 6 this result is extended to potentials with local singularities,
by the use of relative wave operators.

We employ the following notations:Q = (Q1,Q2,Q3) andP = (P1, P2, P3) denote
the usual 3-component position and momentum operator respectively in the Hilbert space
H = L2(R3), with h̄ = 1. We setQ = {∑3

j=1Q
2
j }1/2, 〈Q〉ρ = (I + Q2)ρ/2 for ρ ∈ R,

H0 = P 2 =∑3
j=1P

2
j andP = H 1/2

0 . Each of these operators is considered on the domain
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Figure 1. A doubly truncated admissible cone.

on which it is self-adjoint. Ifϕ is a function defined onR3, then ϕ(Q) is the operator
of multiplication by ϕ(x) in L2(R3). In the particular case whereϕ is the characteristic
function χG of a subsetG of R3 (χG(x) = 1 if x ∈ G,χG(x) = 0 if x 6∈ G), we use
the notationE(x ∈ G) for χG(Q). Sometimes we write simplyϕf for ϕ(Q)f . By ‖ · ‖
we mean the norm and by〈·, ·〉 the scalar product inL2(R3), whereas theL2-norm and
scalar product on a subsetG of R3 (always with respect to Lebesgue measure) will be
written as‖ · ‖L2(G) and 〈·, ·〉L2(G) respectively. We observe thatD(P ) = ∩3

j=1D(Pj ) and

‖Pf ‖2 =∑3
j=1 ‖Pjf ‖2 if f belongs to the domainD(P ) of P . We denote byB(H) the set

of all bounded everywhere defined linear operators inH and by‖A‖ the norm ofA ∈ B(H).
If α = (α1, α2, α3) is a multi-index, then|α| = α1+ α2+ α3 andDαf = ∂α1

1 ∂
α2
2 ∂

α3
3 f , with

∂jf (x) = ∂f (x)/∂xj . Sb denotes the sphere{x ∈ R3‖x| = b}.

2. Restriction of functions to the boundaries of cones

Throughout this paperC will be a closed cone inR3 with vertex at the origin and different
from R3(C 6= R3). We let a be some fixed positive number(a > 0). If R ∈ (a,∞),
we denote byCa,R the doubly truncated coneCa,R = {x ∈ C|a < |x| < R}. The
boundary∂Ca,R of Ca,R is the union of two spherical surfaces6a = {x ∈ C||x| = a} and
6R = {x ∈ C||x| = R} and the lateral surface3a,R = {x ∈ ∂C|a < |x| < R}. We shall
also consider the once-truncated coneCa ≡ Ca,∞ = {x ∈ C||x| > a}, with a corresponding
lateral surface3a = {x ∈ ∂C||x| > a}.

To prove our results we shall restrict ourselves to specially simple cones which we call
admissible. The extension to a much larger class of cones is then straightforward and will
be discussed at the end of section 4.

A closed coneC 6= R3 will be called admissibleif it is convex, with a non-empty
interior, and if there are a finite number of straight lines{Lk}Nk=1 on its boundary∂C, each
passing through the pointx = 0, that subdivide3a into N disjoint smooth surfacesOk. So
we have3a = (∪Nk=1Ok) ∪ (∪Nk=1Lk ∩ ∂Ca), where it is assumed thatLk ∩Oj = ∅ for all
j , k (i.e.Ok does not contain its boundary points on3a).

If C is an admissible cone andR < ∞, one can apply the divergence theorem
on the domainCa,R (see e.g. [7, 8]): ifu, v are functions of classC2 on R3 and
Ok,R = {x ∈ Ok||x| < R}, then∫
Ca,R

[u(x)1v(x)− v(x)1u(x)] d3x =
N∑
k=1

∫
Ok

[u(y)∇v(y)− v(y)∇u(y)] · n(y) dσ(y)
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+
∫
6a∪6R

[u(y)∇v(y)− v(y)∇u(y)] · n(y) dσ(y) (1)

where dσ denotes the area element on the surface under consideration andn(y) is the
outward unit normal vector to this surface at the pointy.

Let C be an admissible cone and letO be either one of theOk orO = 6b = C∩Sb for
someb > 0. If f is a smooth function onR3, then its restrictionf |O to O is well defined.
We shall need estimates on the norm off |O in L2(O) in terms of certain norms onf in
L2(R3). More precisely, we have the following inequality the proof of which is indicated
in the appendix.

Proposition 1.If O is as above, then there is a constantc < ∞ such that the following
inequality holds for all functionsf , ϕ: R3 → C of classC1 such that (i)f belongs to
the domainD(P ) of the operatorP = H 1/2

0 (in particularf ∈ L2(R3)) and (ii) ϕ and its
first-order derivatives are bounded andϕ(x) = 1 for all x ∈ O:

‖f |O‖L2(O) ≡
[ ∫
O
|f (y)|2 dσ(y)

]1/2

6 c[‖ϕ(Q)f ‖ + ‖Pϕ(Q)f ‖]. (2)

Forϕ ≡ 1, the inequality (2) means that the operatorγO of restricting toO, defined first
on the dense set of vectorsf indicated in proposition 1(γOf = f |O), extends to a bounded
operator fromH1(R3) ≡ D(P ) (equipped with the graph norm) toL2(O), or equivalently
that the closure0O of γO(I + P)−1 is a bounded operator fromL2(R3) to L2(O); in fact,
upon replacingf by (I + P)−1g in (2) and observing that‖f ‖ + ‖Pf ‖ 6 √2‖(I + P)f ‖
(sinceP > 0), one sees that‖0Og‖L2(O) 6

√
2c‖g‖. The adjoint0∗O of 0O is then a

bounded operator fromL2(O) to L2(R3).
We are particularly interested in the operatorγ3a of restricting functions to the lateral

boundary3a of Ca: γ3af = f |3a . It is clear that‖f |3a‖2
L2(3a)

= ∑N
k=1 ‖f |Ok‖2

L2(Ok).

If L2(Ok) is identified in a natural way with a subspace ofL2(3a), then0Ok becomes a
bounded operator fromL2(R3) into L2(3a), and the closure03a of γ3a (I +P)−1 is simply
given by

03a =
N∑
k=1

0Ok . (3)

Similarly, if a < R <∞, one may viewL2(3a,R) as a subspace ofL2(3a) and introduce
a bounded operator03a,R from L2(R3) into L2(3a) as the closure ofγ3a,R (I + P)−1, with
γ3a,Rf = f |3a,R . The following relations are straightforward consequences of proposition 1:

‖03a,R‖ 6 ‖03a‖ <∞ ∀R > a s-lim
R→∞

03a,R = 03a . (4)

Another useful result is the following estimate: let06b be the closure ofγ6b(I +P)−1,
whereγ6bf = f |6b . Then, as shown in the appendix, one has

‖06b‖ 6 4 for all b > 1. (5)

(Observe that this implies the estimate (2.2) in [6]; the operator denoted by0R in [6] may
be identified withR(n−1)/20SR ).

3. The quantum-mechanical flux

Let O be a smooth hypersurface inR3 as in proposition 1. Iff is a wavefunction,
then texts on quantum mechanics define the flux density off at a pointx ∈ R3 as
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2 Imf (x)∇f (x) ≡ 2 Ref (x)Pf (x) (we choose the massm = 1
2), and the flux8O(f )

throughO is given as the integral of the normal component of this density overO:

8O(f ) = 2 Re
3∑

j=1

∫
O
f (y)nj (y)(Pjf )(y) dσ(y). (6)

If f and∇f are continuous functions, the flux density has a pointwise meaning. For more
general wavefunctions inL2(R3), the integral in (6) need not be well defined, becauseO is
a set of Lebesgue measure zero inR3, so that the integrand may not make sense. However,
for f ∈ D(H0), one may give a meaning to the integrated flux throughO as the expectation
value of a certain operator̂FO, the so-calledflux operator for O, defined in terms of0O.
To see this, considern(y) = (n1(y), n2(y), n3(y)) as a multiplication operator inL2(O)
and rewrite (6) (for smoothf in the first instance) as

8O(f ) = 2 Re
3∑

j=1

∫
O
(γOf )(y)nj (y)(γOPjf )(y) dσ(y) = 2 Re

3∑
j=1

〈γOf, njγOPjf 〉L2(O)

= 2 Re
3∑

j=1

〈γO(I + P)−1(I + P)f, njγO(I + P)−1Pj (I + P)f 〉L2(O)

= 2 Re
3∑

j=1

〈(I + P)f, 0∗Onj0OPj (I + P)f 〉 = Re〈(I + P)f, FO(I +H0)f 〉

(7)

whereFO is the following bounded operator inH = L2(R3):

FO = 2
3∑

j=1

0∗Onj0OPj (I + P)(I + P 2)−1. (8)

Observe that (7), defined originally for smoothf , makes sense for allf in D(H0).
Equation (7) shows that8O(f ) may be viewed as the expectation value〈f, F̂Of 〉 of

the (unbounded) observablêFO = 2 Re
∑3
j=1(I + P)0∗Onj0OPj (I + P). For our purposes,

however, it will be more convenient to use the last expression in (7) for8O(f ) in terms of
the non-self-adjoint, but bounded, operatorFO.

We draw attention to a useful alternative expression forφO(f ). If O is any subset of
R3, define2O to be the set of all functionsθ : R3 → C of classC2 such thatθ , ∂j θ
and1θ are bounded and such thatθ(x) = 1 for all x in some neighbourhood ofO. If
O is as in (7), and ifθ1, θ2 ∈ 2O, then the first expression for8O(f ) in (7) remains
unchanged if(γOf )(y) is replaced by(γOθ1f )(y) and(γOPjf )(y) by (γOPjθ2f )(y). So,
for θ1, θ2 ∈ 2O, we have

8O(f ) = Re〈(I + P)θ1(Q)f, FO(I +H0)θ2(Q)f 〉. (9)

Now consider a doubly truncated admissible coneCa,R. The boundary ofCa,R is the
union of a finite number of smooth hypersurfaces, namely6a, 6R andOk,R = Ok ∩ ∂Ca,R
(k = 1, . . . , N) and of a finite number of curves, so one may associate to it a flux operator
F∂Ca,R by setting

F∂Ca,R = F6a + F6R +
N∑
k=1

FOk,R . (10)

Let H be a Hamiltonian of the formH = H0 + V (Q) and Ut = exp(−iHt) the
associated unitary evolution operator for a time interval of lengtht (recall that we set
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h̄ = 1). We consider for the moment potentialsV such thatD(H0) ⊆ D(V ) and such that
H = H0+ V (Q) is self-adjoint onD(H0), so thatD(H) = D(H0) (this holds in particular
if V = V1 + V2 with V1 a bounded function andV2 ∈ L2(R3); more singular potentials
will be considered in section 6). One expects that the rate of change of the probability of
presence of a state inCa,R should be determined by the flux through the boundary∂Ca,R
of the truncated coneCa,R. To make this precise, let us observe that, ifg ∈ D(H), then
Utg ∈ D(H) and consequently

d

dt
‖E(x ∈ Ca,R)Utg‖2 = d

dt
〈Utg,E(x ∈ Ca,R)Utg〉

= i[ 〈HUtg,E(x ∈ Ca,R)Utg〉 − 〈Utg,E(x ∈ Ca,R)HUtg〉]
= i[ 〈H0Utg,E(x ∈ Ca,R)Utg〉 − 〈Utg,E(x ∈ Ca,R)H0Utg〉] (11)

sinceV (Q)E(x ∈ Ca,R) = E(x ∈ Ca,R)V (Q). With H0 = −1, formal application of the
divergence theorem (1) suggests that

d

dt
‖E(x ∈ Ca,R)Utg‖2 = −8∂Ca,R (Utg). (12)

The following lemma, applied withh = Utg to the identity (11), will allow us to verify
rigorously that (11) implies (12).

Lemma 1.If h ∈ D(H0), then

i[ 〈H0h,E(x ∈ Ca,R)h〉 − 〈h,E(x ∈ Ca,R)H0h〉] = −Re〈(I + P)h, F∂Ca,R (I +H0)h〉.
(13)

Proof. To simplify the notation we writeE for E(x ∈ Ca,R). Chooseϕ ∈ C∞0 (R3) such
that

∫
R3 ϕ(x) d3x = 1, setϕε(x) = ε−3ϕ(ε−1x) (for ε > 0) and definehε by

hε(x) =
∫
R3
ϕε(x− y)h(y) d3y ≡ (ϕε ∗ h)(x).

Thenhε is of classC∞ and‖hε−h‖ → 0 asε→ 0 (see e.g. [9, lemma 2.18]). Also, since
h ∈ D(H0) andDαhε = ϕε ∗Dαh, we have‖Pjhε−Pjh‖ → 0 and‖PjPkhε−PjPkh‖ → 0
asε→ 0. So from the divergence theorem (1) and using (6), (7) and (10), we have

〈H0h,Eh〉 − 〈h,EH0h〉 = lim
ε→0

[〈H0hε, Ehε〉 − 〈hε, EH0hε〉]

= lim
ε→0

∫
Ca,R

[hε(x)1hε(x)− hε(x)1hε(x)] d3x

= lim
ε→0

∫
6a∪6R∪3a,R

[hε(y)∇hε(y)− hε(y)∇hε(y)] · n(y) dσ(y)

= i lim
ε→0

Re〈(I + P)hε, F∂Ca,R (I +H0)hε〉 = i Re〈(I + P)h, F∂Ca,R (I +H0)h〉.
(14)

�
Remark. As mentioned at the beginning of this section, a pointwise meaning can be
found for the flux density in situations wheref and ∇f are continuous functions on
R3. The condition thatf ∈ D(H0), which is normally assumed here, implies thatf is
continuous. The continuity of∇f is assured for example by the assumption thatf ∈ D(Hν

0 )

for some ν > 5
4 (see for example [10, theorem IX.24]). In our applications we have

f = Utg = Ut�−fin = �−U0
t fin, wherefin is the initial wavefunction in a scattering

process,U0
t = exp(−iH0t) and�− the wave operator att = −∞ (assumed to exist).
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If fin ∈ D(Hρ

0 ) for someρ > 0, thenU0
t fin ∈ D(Hρ

0 ) and Ut�−fin ∈ D(|H |ρ). If
D(H) = D(H0), thenf = Utg is continuous for each value oft . The continuity of∇Utg
follows from the assumption that�− mapsD(Hρ

0 ), for someρ > 0, intoD(Hκ
0 ), for some

κ > 5
4. Conditions on the potentialV guaranteeing this mapping property of�− can be

found for example in [11].

4. The integrated flux

Let O again be a smooth hypersurface inR3 and {Ut }t∈R a unitary evolution group. We
denote byIO(g, T ) the time integral over the interval(T ,∞) of the flux ofUtg throughO:

IO(g, T ) =
∫ ∞
T

8O(Utg) dt = Re
∫ ∞
T

〈(I + P)Utg, FO(I +H0)Utg〉 dt. (15)

For a doubly truncated admissible coneCa,R, this defines in particularI6a (g, T ), I6R (g, T )
and the integrated fluxI3a,R (g, T ) =

∑N
k=1 IOk,R (g, T ) through the lateral surface. We now

list a set of conditions which imply that the probability of presence ofUtg in Ca ≡ Ca,∞ at
time t = +∞ is identical with the integrated fluxI6R (g, T ) across6R, in the limitR→∞
(for any finiteT ). These conditions are as follows:

(H1) limt→+∞ ‖E(x ∈ Ca,R)Utg‖ = 0 ∀R ∈ (a,∞).
(H2) limR→∞

∫ T2

T1
86R(Utg) dt = 0 if −∞ < T1 < T2 < +∞.

(H3) limT→∞ I6a (g, T ) ≡ limT→∞
∫∞
T
86a (Utg) dt = 0.

(H4) There are constantsR0 > a, t0 > 0 and a functionη ∈ L1(t0,∞) such that
|83a,R (Utg)| 6 η(t) for eachR > R0 and eacht > t0.

It is instructive to consider the interpretation of these conditions in terms of propagation
properties of states. (H1) will hold if the stateUtg is evanescent at large positive times, and
(H2) requires that, ifR is very large, then the flux through6R will be small at finite times.
The condition (H3), as well as (H4) withR finite, demand a stronger form of evanescence:
the flux of Utg through bounded hypersurfaces should be small at large times (think of
η for example asη(t) = t−µ with µ > 1). A scattering state is expected to have all
these properties. Since such states are asymptotically localized far away from the scattering
centre, it is the flux near infinity that matters at large times, and for largeR the condition
(H4) means that the flux should be essentially radial at large distances from the origin.

Proposition 2.Let C be an admissible cone. Assume thatg ∈ D(H) is such that (H1)–
(H4) are satisfied and that equation (12) holds (in particular it is assumed that86a(Utg),
86R(Utg) and83a,R (Utg) are well defined for eacht ∈ R and eachR > a). Then the
following limits exist, are finite and equal for any finiteT :

lim
t→+∞‖E(x ∈ Ca)Utg‖

2 = lim
R→∞

∫ ∞
T

86R(Utg) dt ≡ lim
R→∞

I6R (g, T ). (16)

If in addition ‖E(|x| 6 a)Utg‖ → 0 as t → +∞, then the limits in (16) are equal to
limt→+∞ ‖E(x ∈ C)Utg‖2.

Proof.
(i) We first deduce some consequences of (H4). From (8) and the second relation in

(4), one sees thatF3a,R converges weakly toF3a asR → ∞. So limR→∞83a,R (Utg) =
83a(Utg), by virtue of (7) or (9). Then, by using (H4) and the Lebesgue dominated
convergence theorem, we have fort > t0:

lim
R→∞

I3a,R (g, t) ≡ lim
R→∞

∫ ∞
t

83a,R (Uτg) dτ =
∫ ∞
t

83a (Uτg) dτ (17)
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and ∣∣∣∣ ∫ ∞
t

83a (Uτg) dτ

∣∣∣∣ 6 ∫ ∞
t

η(τ ) dτ. (18)

(ii) By using first (H1), then (12) and (10), we obtain

‖E(x ∈ Ca)Utg‖2 = lim
R→∞
‖E(x ∈ Ca,R)Utg‖2 = − lim

R→∞

∫ ∞
t

d

dτ
‖E(x ∈ Ca,R)Uτg‖2 dτ

= lim
R→∞
{I6a (g, t)+ I6R (g, t)+ I3a,R (g, t)}. (19)

Since the first limit in (19) exists, by combining (19) with (17), we deduce that limI6R (g, t)

asR→∞ exists if t > t0 and that

‖E(x ∈ Ca)Utg‖2 = I6a (g, t)+ lim
R→∞

I6R (g, t)+
∫ ∞
t

83a (Uτg) dτ. (20)

Now observe, by (H2), that limR→∞ I6R (g, t) is independent oft , say limR→∞ I6R (g, t) = `.
So the r.h.s. of (16) is equal tò. Finally, by taking into account (H3) and the inequality
(18), and by remembering thatη ∈ L1(t0,∞), one finds from (20) that‖E(x ∈ Ca)Utg‖2

converges tò as t →+∞. It follows immediately that 06 ` 6 ‖g‖2. The second half of
the proposition is a straightforward consequence. �

Having proved (16) for all admissible cones, the result can easily be obtained for a
more general class of cones by considering unions or differences of admissible cones. For
example if C is a cone that can be subdivided by a finite number of smooth internal
surfaces (in fact plane surfaces) into a union of admissible cones{Ck}Mk=1, then (16) holds
for C because‖E(x ∈ Ca)Utg‖2 = ∑M

k=1 ‖E(x ∈ Ck,a)Utg‖2 and, with the notation
6k,R = Ck ∩ SR : 86R(Utg) =

∑M
k=186k,R (Utg). By a limiting procedure one could also

treat certain cones that are subdivisible into a countable union of admissible cones.
Similarly one may pass from admissible cones to another class of non-convex cones:

let C be an admissible cone and let{Ck}Mk=1 be pairwise disjoint admissible cones contained
in C. Let Ĉ = C \ (∪Mk=1Ck). Then, by arguing as above, (16) holds forĈ.

The above procedures allow us to treat all reasonably shaped cones, in particular circular
cones (∂6a is a circle), rectangular cones (the intersection ofC with some plane not
containing the origin is a rectangle), cones having holes (e.g. the cone corresponding to an
annular array of counters, where6R may be the region between two circles on the sphere
SR).

5. Estimates on the flux for smooth potentials

In this section we verify (16) in the caseUt = exp(−iHt) andH = H0+ V (Q), whereV
is a smooth potential, for a dense subset of vectorsg in the absolutely continuous subspace
Hac(H) of the HamiltonianH . We assume thatV : R3 → R is of classC∞ and that for
each multi-indexα there is a constantcα such that, for someκ > 0:

|DαV (x)| 6 cα〈x〉−κ−|α| ≡ cα(1+ x2)−(κ+|α|)/2. (21)

Clearly in this caseD(H) = D(H0). We shall use the following results concerning these
Hamiltonians.

(P1) The spectrum ofH consists of an absolutely continuous partσac(H) = [0,∞) and
possibly also a set of eigenvalues in(−c0, 0], wherec0 denotes the constantcα for α = 0.
In particularH has no singularly continuous spectrum and no positive eigenvalues.

(P2) If ψ ∈ C∞0 (R) andµ > 0, then〈Q〉µψ(H)〈Q〉−µ ∈ B(H).
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(P3) If z belongs to the resolvent set ofH , W ∈ L2(R3) andµ ∈ R, then the closures
of 〈Q〉−µW(Q)(H − z)−1〈Q〉µ and〈Q〉−µPj (H − z)−1〈Q〉µ belong toB(H).

(P4) Letψ ∈ C∞0 ((0,∞)) and 06 ν ′ < ν. Then there is a constantc such that for all
t ∈ R:

‖〈Q〉−νe−iHtψ(H)〈Q〉−ν‖ 6 c(1+ |t |)−ν ′ . (22)

For proofs of these results the reader may consult for example the following references:
[12] for (P1), [13, lemmas 2, 5] for (P2), [13, lemma 3] for (P3) and [14, 15 or 16] for (P4).

In what follows letω be a fixed number satisfyingω > c0 + 1. ThenH + ω > I and
‖(H + ω)−1‖ < 1. We shall use the following commutator identities:

[ϕ(Q), (H + ω)−1] = (H + ω)−1[H,ϕ(Q)](H + ω)−1

= (H + ω)−1{(1ϕ)(Q)− 2iP · (∇ϕ)(Q)}(H + ω)−1

= (H + ω)−1{−(1ϕ)(Q)− 2i(∇ϕ)(Q) · P }(H + ω)−1 (23)

and (for suitable operatorsA)

[A,Ut ] = −iUt

∫ t

0
U−τ [A,H ]Uτ dτ ; (24)

in cases where we use it, the formal relation (24) can be verified on an appropriate domain.
For ρ > 0 we letDρ(H) be the following subset ofH:

Dρ(H) = {ψ(H)〈Q〉−ρf |ψ ∈ C∞0 ((0,∞)), f ∈ H}. (25)

We shall often writeDρ for Dρ(H). One hasDρ ⊆ Hac(H) ∩ D(H) andDρ ⊆ D(〈Q〉ρ)
as a consequence of (P1) and (P2) respectively. FurthermoreUtDρ ⊆ Dρ , and it is easy
to check thatDρ is dense inHac(H). We also observe thatHDρ ⊆ Dρ andDµ ⊆ Dρ if
µ > ρ.

We shall use the following consequences of the propagation estimates (P4): letg ∈ Dν ,
0 6 ν ′ < ν and ϕ : R3 → C be such that|ϕ(x)| 6 C〈x〉−ν for some constantC.
Observe thatθ(H)g = g for some θ ∈ C∞0 ((0,∞)) (chooseθ such thatθψ = ψ if
g = ψ(H)〈Q〉−νf ). So there is a constantc such that for allt ∈ R:

‖〈Q〉−νUtg‖ 6 c(1+ |t |)−ν ′ ‖〈Q〉νg‖ (26)∥∥∥∥ ∫ t

0
τU−τ ϕ(Q)Uτg dτ

∥∥∥∥ 6 c(1+ |t |)2−ν ′ ‖〈Q〉νg‖. (27)

Proposition 3.Let C be an admissible cone. Assume thatV satisfies (21) withκ > 2
3.

Then (H1)–(H4) are satisfied for eachg ∈ Dρ(H) if ρ > 5
3.

Since the proof of proposition 3 is rather long, we split it up into a sequence of lemmas.
Some of these require less stringent assumptions onκ andρ.

Lemma 2.If κ > 0 andg ∈ Hac(H), then‖E(|x| < R)Utg‖ → 0 as |t | → ∞ for each
R <∞. In particular (H1) is satisfied for eachg ∈ Hac(H).

Proof. If g ∈ Hac(H), thenw − lim|t |→∞ Utg = 0, and the result follows upon observing
thatE(|x| < R) is H -compact. �
Lemma 3.If κ > 0 andg ∈ D(H), then the condition (H2) is satisfied.

Proof. By virtue of the Lebesgue dominated convergence theorem, it suffices to show that
there is a constantc < ∞ such that|86R(Utg)| 6 c for all R > 1 and allt ∈ R and that
limR→∞86R(Utg) = 0 for each fixedt ∈ R. For this we observe that‖F6R‖ 6 40 for
all R > 1 (the numerical value of the preceding constant is of course irrelevant but can be
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obtained by using (8) and (5), the Schwarz inequality for the sum in (8) and the inequality
‖P(I + P)(I + P 2)−1‖ < 5

4). So we have from (7) that, forR > 1:

|86R(Utg)| 6 40‖(I + P)Utg‖‖(I +H0)Utg‖ 6 50‖(I +H0)Utg‖2

6 50‖(I +H0)(H + ω)−1‖2‖(H + ω)g‖2 (28)

which is finite and independent ofR and t (we have used the inequality‖(I + P)(I +
P 2)−1‖ < 5

4).
Next we chooseθ : R3 → [0, 1] of classC∞ such thatθ(x) = 0 if |x| < 1

4 and
θ(x) = 1 if |x| > 1

2, and we setθR(x) = θ(x/R), so thatθR ∈ 26R . Then, by using (9),
we obtain as above that

|86R(Utg)| 6 50‖(I +H0)θR(Q)Utg‖2. (29)

Now

(I +H0)θR(Q) = θ(QR )(I +H0)− 1

R2
(1θ)(

Q
R
)− 2i

R
(∇θ)(Q

R
) · P . (30)

When applied to a fixed vector inD(H0), each term on the r.h.s. of (30) converges strongly
to zero asR→∞. So86R(Utg)→ 0 asR→∞ for each fixedt ∈ R. �

Lemma 4.If κ > 0 andg ∈ Dν(H) with ν > 1
2, then (H3) is satisfied.

Proof. Fix ν ′ ∈ ( 1
2, ν) and chooseθ : R3 → [0, 1] of classC∞ such thatθ(x) = 1 if

|x| < a + 1 andθ(x) = 0 if |x| > a + 2. Then, as in the preceding proof:

|86a(Utg)| 6 4‖06a‖2‖(I +H0)θ(Q)Utg‖2 = 4‖06a‖2‖θ(Q)Utg + θ(Q)
×[H − V (Q)]Utg − (1θ)(Q)Utg − 2i(∇θ)(Q) · PUtg‖2.

Since the closures ofθ(Q)〈Q〉ν , (1θ)(Q)〈Q〉ν and (∂j θ)(Q)〈Q〉ν are bounded operators
(with norm 6 ĉ, say), one gets from (26) the following bounds for the terms in the last
norm:

‖θ(Q)Utg − θ(Q)V (Q)Utg − (1θ)(Q)Utg‖ 6 ĉc[2+ ‖V ‖∞](1+ |t |)−ν ′ ‖〈Q〉νg‖
‖θ(Q)HUtg‖ = ‖θ(Q)UtHg‖ 6 constant(1+ |t |)−ν ′
‖(∂j θ)(Q)PjUtg‖ 6 ĉ‖〈Q〉−νPj (H + ω)−1〈Q〉ν‖‖〈Q〉−νUt (H + ω)g‖

6 constant(1+ |t |)−ν ′

where we have used (26), (P3) and the fact thatHg ∈ Dν if g ∈ Dν . We conclude that
|86a(Utg)| 6 constant(1+ |t |)−2ν ′ , which implies (H3). �

It remains to prove the validity of (H4) under the assumptions of proposition 3. To do
this, observe that, ifO is a conical two-dimensional surface (in particular ifO = Ok), then∑3
j=1 nj (y)yj ≡ n(y) · y = 0 for y ∈ O. In that case an alternative expression for8O(f )

may be obtained as follows (cf (7)):

8O(f ) = 2 Re
3∑

j=1

∫
O
(γOf )(y)nj (y){γO(Pj − λQj)f }(y) dσ(y)

= 2 Re
3∑

j=1

〈(I + P)θ(Q)f, 0∗Onj0O(I + P)(Pj − λQj)f 〉 (31)
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if θ ∈ 2O and λ is any number. Takingf = Utg and λ = (2t)−1, and recalling that
3a,R = ∪Nk=1Ok,R modulo a finite number of straight lines, we have (with‖0Ok,R‖ 6 ‖03a‖)

|83a,R (Utg)| 6 2N‖03a‖2‖(I + P)θ(Q)Utg‖
3∑

j=1

‖(I + P)
(
Pj − Qj

2t

)
Utg‖. (32)

We shall find that‖(I + P)θ(Q)Utg‖ 6 constant(1+ |t |)−min(
1
2 ,κ

′/2) and ‖(I + P)(Pj −
Qj
2t )Utg‖ 6 constant(1+ |t |)−min(1,κ ′) for anyκ ′ < κ and a suitable choice ofθ in 23a (see
lemmas 8 and 6). This implies (H4) forκ > 2

3.

Lemma 5.Let Y (j)t = 2
∫ t

0 τU−τ (∂jV )(Q)Uτ dτ . Then for eachg ∈ D1 one has, fort > 0:(
Pj − Qj

2t

)
Utg = − 1

2t
Ut (Qj + Y (j)t )g. (33)

Proof. By theorem 2.1 of [17] one hasUtg ∈ D(Qj). From (24) it then follows that(
Pj − Qj

2t

)
Utg = UtPjg − Ut

∫ t

0
U−τ (∂jV )(Q)Uτg dτ − 1

2t
UtQjg

−1

t
Ut

∫ t

0
U−τPjUτg dτ. (34)

We deal with the last integral by commutingPj throughUτ (using (24) again) and then
integrating by parts with respect to theτ variable. This gives∫ t

0
U−τPjUτg dτ = tPjg −

∫ t

0
dτ
∫ τ

0
U−σ (∂jV )(Q)Uσg dσ

= tPjg − τ
∫ τ

0
U−σ (∂jV )(Q)Uσg dσ

∣∣∣∣t
τ=0

+
∫ t

0
τU−τ (∂jV )(Q)Uτg dτ

= tPjg − t
∫ t

0
U−σ (∂jV )(Q)Uσg dσ + 1

2Y
(j)
t g.

Substituting this expression into (34), we arrive at (33). �
Lemma 6.Suppose thatV satisfies (21) for someκ > 0. Forg ∈ D(H), setgω = (H+ω)g.
Then for eachκ ′ < κ there is a constantc = c(κ ′) such that for allg ∈ Dκ+1(H):∥∥∥∥(I + P)(Pj − Qj2t

)
Utg

∥∥∥∥ 6 c(1+ |t |)−min(1,κ ′)[‖〈Q〉κ+1g‖ + ‖〈Q〉κ+1(H + ω)g‖]. (35)

Proof.
(i) Let Y (j)t be as in lemma 5. The norm ofY (j)t g may be estimated using (27) with

ϕ = ∂jV andν = κ + 1:

‖Y (j)t g‖ 6 cj (1+ |t |)1−κ ′ ‖〈Q〉κ+1g‖. (36)

Herecj is a constant depending also onκ ′ (note that‖Y (j)t ‖ is uniformly bounded int if V
is a short range potential, i.e. in the caseκ > 1).

(ii) From (33) and (36) we now have:∥∥∥∥(Pj − Qj2t

)
Utg

∥∥∥∥ 6 1

2t
[‖Qjg‖ + ‖Y (j)t g‖] 6 c(1+ |t |)−min(1,κ ′)‖〈Q〉κ+1g‖ (37)

and∥∥∥∥Pk (Pj − Qj2t

)
Utg

∥∥∥∥ 6 1

2t
[‖PkUtQj (H + ω)−1gω‖ + ‖PkUtY (j)t (H + ω)−1gω‖]. (38)



Flux and scattering into cones 5371

The norms on the r.h.s. of (38) are handled by commuting(H +ω)−1 throughQj andY (j)t

respectively (using (23)), to give in the first instance

‖PkUtQj (H + ω)−1gω‖ 6 ‖Pk(H + ω)−1‖‖Qjgω‖ + ‖Pk(H + ω)−1‖‖[Qj,H ]g‖.
Since [Qj,H ] = 2iPj andPk(H + ω)−1 ∈ B(H), the r.h.s. of this inequality is finite. For
the following norm we have

‖PkUtY (j)t (H + ω)−1gω‖ 6 ‖Pk(H + ω)−1‖‖Y (j)t gω‖ + 2‖Pk(H + ω)−1/2‖

×
∥∥∥∥(H + ω)−1/2

∫ t

0
τ dτU−τ

[
(∂j1V )(Q)− 2i

3∑
`=1

P`(∂j ∂`V )(Q)

]
Uτg

∥∥∥∥.
By (36) the first summand on the r.h.s. is6 constant(1 + |t |)1−κ ′ ‖〈Q〉κ+1gω‖. Since
Pk(H+ω)−1/2 = Pk(H0+ω)−1/2 ·(H0+ω)1/2(H+ω)−1/2 is bounded, the second summand
on the r.h.s. is bounded by a constant multiple of∫ t

0
τ dτ‖(∂j1V )(Q)Uτg‖ + 2

3∑
`=1

‖P`(H + ω)−1/2‖ ·
∫ t

0
τ dτ‖(∂j ∂`V )(Q)Uτg‖.

With |(∂j1V )(x)| + |(∂j ∂`V )(x)| 6 c〈x〉−κ−2 6 c〈x〉−κ−1, we see from (26) that the
preceding sum is6 constant(1+ |t |)1−κ ′ ‖〈Q〉κ+1g‖.

Putting together the above estimates, one arrives at (35). (Observe that‖Pjg‖ 6
c‖(H + ω)g‖ and recall that‖Pf ‖2 =∑3

j=1 ‖Pjf ‖2). �
Lemma 7.Let C be an admissible cone,ξ a unit vector in the interior ofC andσ > 0. Let
C(σ) = {x ∈ R3|x = y + µξ,y ∈ ∂C,−σ < µ < σ } be the domain inR3 obtained by
translating∂C alongξ by distances less thanσ . Let β > 1

2. Then there is a finite constant
c such that for each bounded functionϕ : R3→ C with support inC(σ) and for all t ∈ R
(with U0

t = exp(−iH0t)):

‖ϕ(Q)U0
t (I + |ξ ·Q|)−β‖ 6 c‖ϕ‖∞(1+ |t |)−1/2. (39)

Proof. We choose a Cartesian coordinate system such that the 3-axis is alongξ , so that
ξ ·Q = Q3. We shall use the Dollard decomposition of exp(−iP 2

3 t), given for t > 0 by
exp(−iP 2

3 t) = ZtGtZt with

(Ztf )(x) = eix2
3/4t f (x) (Gtf )(x) = (2it)−1/2

∫ ∞
−∞

e−iux3/2t f (x1, x2, u)du.

SinceP1 andP2 commute withQ3, we have

‖ϕ(Q)U0
t (I + |Q3|)−β‖ 6 ‖ϕ‖∞‖E(x ∈ C(σ))e−iP 2

3 t (I + |Q3|)−β‖
= ‖ϕ‖∞‖E(x ∈ C(σ))Gt(I + |Q3|)−β‖.

For fixed x1, x2, let S(x1, x2) = {x3 ∈ R|x ≡ (x1, x2, x3) ∈ C(σ)} be the set of points in
C(σ) on the line parallel to the 3-axis passing through the point(x1, x2, 0). SinceC is
convex,S(x1, x2) is an interval of length 2σ . So, by using the Schwarz inequality in the
integral with respect tou below, we have fort > 0:

‖E(x ∈ C(σ))Gt(I + |Q3|)−βf ‖2

= 1

2t

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2

∫
S(x1,x2)

dx3

∣∣∣∣ ∫ ∞−∞ e−iux3/2t (1+ |u|)−βf (x1, x2, u)du

∣∣∣∣2
6 1

2t

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2

∫
S(x1,x2)

dx3

∫ ∞
−∞

du|f (x1, x2, u)|2‖(1+ |x|)−β‖2
L2(R)

= σ

t
‖f ‖2‖(1+ |x|)−β‖2

L2(R).
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This implies (39) withc = {1+ σ‖(1+ |x|)−β‖2
L2(R)}1/2. �

If C is an admissible cone, thenC(σ) forms a neighbourhood of3a. In particular there
are functions in23a having support inC(σ). Then we have

Lemma 8.Let C be an admissible cone andθ a function in23a with support inC(σ) for
someσ > 0. Suppose thatV satisfies (21) for someκ > 0, and let 06 κ ′ < κ. Then there
is a finite constantc such that for eachg ∈ Dκ+1(H):

‖(I + P)θ(Q)Utg‖ 6 c(1+ |t |)−min(1/2,κ ′/2)[‖〈Q〉κ+1g‖ + ‖〈Q〉κ+1(H + ω)g‖]. (40)

Proof. The proof will introduce two parametersβ and κ0, with 1
2 < β 6 1 andκ0 < κ,

the appropriate values ofβ andκ0 to be determined later.
(i) We begin with an auxiliary estimate. Using the relation [Qj,U

0
−t ] = −2tU0

−tPj and
the bound (37), we have, for some constantc:

‖QjU0
−tUtg‖ = ‖2tU0

−t

(
Pj − Qj

2t

)
Utg‖ 6 c(1+ |t |)max(0,1−κ0)‖〈Q〉κ+1g‖. (41)

Hence, for any unit vectorξ , we have

‖|ξ ·Q|U0
−tUtg‖ 6

3∑
j=1

‖QjU0
−tUtg‖ 6 3c(1+ |t |)max(0,1−κ0)‖〈Q〉κ+1g‖

and by interpolation:

‖|ξ ·Q|βU0
−tUtg‖ 6 constant(1+ |t |)max(0,β−βκ0)‖〈Q〉κ+1g‖. (42)

(ii) Now let ξ be as in lemma 7. From the inequality(a1+a2)
β 6 aβ1+aβ2 for a1, a2 > 0,

0< β 6 1 and from (39), (42) we find that

‖θ(Q)Utg‖ 6 ‖θ(Q)U0
t (I + |ξ ·Q|)−β‖‖(I + |ξ ·Q|)βU0

−tUtg‖
6 c‖θ‖∞(1+ |t |)−1/2[‖g‖ + ‖|ξ ·Q|βU0

−tUtg‖]
6 c̃(1+ |t |)−min(1/2,1/2−β+βκ0)‖〈Q〉κ+1g‖.

Now chooseβ andκ0 such that the preceding estimate agrees with that shown in (40). If
κ ′ > 1, takeβ = 1 andκ0 = κ ′; then min( 1

2,
1
2−β+βκ0) = 1

2 = min( 1
2,

κ ′
2 ). If κ ′ < 1, take

κ0 = 1
2[κ ′ +min(1, κ)] andβ = 1

2(1− κ ′)(1− κ0)
−1. Thenβ ∈ ( 1

2, 1], κ0 ∈ (κ ′,min(1, κ))
and 1

2 − β + βκ0 = κ ′
2 .

(iii) It remains to carry out similar estimates for‖Pθ(Q)Utg‖ 6
∑3
j=1 ‖Pjθ(Q)Utg‖.

Writing g = (H + ω)−1gω and commutingθ(Q) through (H + ω)−1, as in the proof of
lemma 6, gives

‖Pjθ(Q)Utg‖ 6 ‖Pj (H + ω)−1θ(Q)Utgω‖ + ‖Pj (H + ω)−1[(1θ)(Q)

−2i
3∑
`=1

P`(∂`θ)(Q)]Utg‖

6 ‖Pj (H + ω)−1‖[‖θ(Q)Utgω‖ + ‖(1θ)(Q)Utg‖]

+2‖Pj (H + ω)−1/2‖
3∑
`=1

‖P`(H + ω)−1/2‖‖(∂`θ)(Q)Utg‖.

Since supp1θ ⊂ C(σ) and supp∂`θ ⊂ C(σ), the result of (ii) (first for the function
θ , then with θ replaced by1θ and by∂`θ respectively) allows us to majorize the above
expression by

constant(1+ |t |)−min(1/2,κ ′/2)[‖〈Q〉κ+1g‖ + ‖〈Q〉κ+1gω‖].
�



Flux and scattering into cones 5373

Remarks.
(a) Lemmas 6 and 8 lead to estimates of83a(Utg) in terms of ‖〈Q〉κ+1g‖ and

‖〈Q〉κ+1(H + ω)g‖, whereas in proposition 3 we required only thatg ∈ Dρ for some
ρ > 5

3 (so ρ could be less thanκ + 1 if κ is large). To see that the conditiong ∈ Dρ for
someρ > 5

3 is sufficient, it is enough to observe that, ifV satisfies (21) for someκ, then it
also satisfies these inequalities withκ replaced by min(κ, ρ − 1), in which case lemmas 6
and 8 may be applied withκ replaced by min(κ, ρ − 1).

(b) If V is a short range potential, so thatκ > 1, we may takeκ ′ > 1 in lemmas 6 and
8 and deduce that|83a,R (Utg)| 6 c(1+ |t |)−3/2.

(c) Proposition 2 was formulated in terms of a limitt → +∞. It is clear, under the
assumptions onV andg stated in proposition 3, that a similar result holds for the limit of
negative times, namely

lim
t→−∞‖E(x ∈ Ca)Utg‖

2 = − lim
R→∞

∫ T

−∞
86R(Utg) dt. (43)

6. The flux for singular potentials

In this section we shall extend the results of proposition 3 to a class of potentials having local
singularities. We consider potentialsV that may be expressed in the formV = V1+V2+V3,
where V1 is smooth,V2 contains square-integrable local singularities andV3 may have
arbitrary singularities on a bounded closed setG of measure zero inR3 (a specially important
case is that in whichG = {0} : V3 may then have an arbitrary singularity at the origin). If
V3 6= 0, the Hamiltonian need not be uniquely defined as a self-adjoint operator.

Our assumptions onV = V1 + V2 + V3 are as follows:Vk(k = 1, 2, 3) are real-valued
functions onR3 such that

(V1) V1 is of classC∞ and satisfies (21) for someκ > 0 (later we shall assumeκ > 2
3

as before),
(V2) (1+ x2)σ/2V2 ∈ L2(R3) for someσ > 2,
(V3) there is a numberr0 > 0, and a closed setG of measure zero, withG ⊂ Br0 ≡

{x ∈ R3‖x| 6 r0}, such thatV3(x) = 0 if |x| > r0 andV3 ∈ L2
loc(Br0 \ G).

We setH1 = H0 + V1(Q) and letH be an arbitrary self-adjoint extension of the
symmetric operatorĤ = H0+ V1(Q)+ V2(Q)+ V3(Q) defined onSG = {f ∈ S(R3)|f =
0 in some neighbourhood ofG}. If V3 = 0, we takeH to be the unique self-adjoint operator
H0+ V1(Q)+ V2(Q) defined onD(H0), i.e.D(H) = D(H0). If V3 6= 0, the domain ofH
(for any self-adjoint extension of̂H ) coincides with that ofH0 away from the setG, in the
sense that ifϕ : R3→ C is of classC∞, such thatϕ, ∂jϕ and1ϕ are bounded andϕ = 0
in some neighbourhood ofG, then

f ∈ D(H)⇒ ϕ(Q)f ∈ D(H0) ∩D(V (Q)) ∩D(H)
Hϕ(Q)f = H0ϕ(Q)f + V (Q)ϕ(Q)f.

(44)

In particular:

H0ϕ(Q)(H + i)−1 ∈ B(H) (45)

see, for example, [18, lemma 2] or [1, proposition 2.34, corollary 2.35] (the proofs given
in [1] can easily be adapted to the present situation).

In order to deal with the singularities ofV3, we introduce a cut-off functionη ∈ C∞(R3)

as follows: fix a > r0 and let η(x) = 1 if |x| > a − (a − r0)/3, η(x) = 0 if
|x| < r0 + (a − r0)/3 and 06 η(x) 6 1 otherwise. It is clear thatη ∈ 2∂Ca and
thatH0η(Q)(H + i)−1 ∈ B(H). Also V3(Q)η(Q) = 0.
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Let Ut = exp(−iHt) and U1
t = exp(−iH1t). We note that all results obtained

in section 5 are valid forU1
t . We shall use the relative wave operatorsW± = s −

limt→±∞ U−tU1
t Eac(H1), where Eac(H1) is the orthogonal projection inH with range

Hac(H1). The limits definingW± exist if V satisfies (V1)–(V3), andW± map H into
Hac(H). If V3 6= 0,W± need not be complete, i.e. their ranges need not be equal toHac(H).
This point will be discussed at the end of this section.

SinceI − η(Q) is H1-compact, i.e. [I − η(Q)](H1 + i)−1 is a compact operator inH,
one hass − limt→±∞[I − η(Q)]U1

t Eac(H1) = 0, so that

W± = s − lim
t→±∞U−tU

1
t Eac(H1) = s − lim

t→±∞U−t η(Q)U
1
t Eac(H1). (46)

We shall need the following estimate.

Lemma 9.Suppose thatV satisfies (V1)–(V3). Letf ∈ Dν(H1) for someν > 1, and let
1< ν ′ < min(ν, σ ). Then there is a constantc <∞ such that for allt > 0:

‖UtW+f − η(Q)U1
t f ‖ + ‖H0η(Q)[UtW+f − η(Q)U1

t f ]‖ 6 c(1+ |t |)1−ν ′ . (47)

Remark. The inequality‖ d
dt U−t η(Q)U

1
t f ‖ 6 c(1+ |t |)−ν ′ obtained in the proof below

implies in particular the existence ofW±.

Proof. We setfi = (H1+ i)f .
(i) Taking note of (44) withϕ = η, we obtain

‖UtW+f − η(Q)U1
t f ‖ = ‖W+f − U−t η(Q)U1

t f ‖ =
∥∥∥∥ ∫ ∞

t

d

dτ
U−τ η(Q)U1

τ f dτ

∥∥∥∥
6
∫ ∞
t

‖[Hη(Q)− η(Q)H1]U1
τ f ‖ dτ. (48)

Now

‖[Hη(Q)− η(Q)H1]U1
τ f ‖ = ‖[−(1η)(Q)− 2i(∇η)(Q) · P + V2(Q)η(Q)]U

1
τ f ‖.

As in the proof of lemma 4, we have for anyν ′ < ν:

‖(1η)(Q)U1
τ f ‖ + ‖(∂jη)(Q)PjU1

τ f ‖ 6 constant(1+ |τ |)−ν ′ .
Furthermore, ifV2 ∈ L2(R3) is defined asV2(x) = 〈x〉σV2(x) and(H1+ i)f = fi , then

‖V2(Q)η(Q)U
1
τ f ‖ 6 ‖〈Q〉−σV2(Q)(H1+ i)−1〈Q〉σ‖‖〈Q〉−σU1

τ fi‖.
The finiteness of the first norm on the r.h.s. follows from property (P3) in section 5, and by
(26) the second norm does not exceed constant(1+ |τ |)−ν ′ if ν ′ < min(ν, σ ). So we have
for t > 0:

‖[Hη(Q)− η(Q)H1]U1
τ f ‖ 6 constant(1+ |τ |)−ν ′ . (49)

Substituting into (48) gives the bound for the first term on the l.h.s. of (47).
(ii) From the intertwining propertyψ(H)W+ = W+ψ(H1), we have

H0η(Q)[UtW+f − η(Q)U1
t f ] = H0η(Q)[(H + i)−1UtW+fi − η(Q)(H1+ i)−1U1

t fi ]

= H0η(Q)(H + i)−1[UtW+fi − η(Q)U1
t fi ]

+H0η(Q)[(H + i)−1η(Q)− η(Q)(H1+ i)−1]U1
t fi .

As H0η(Q)(H + i)−1 ∈ B(H), the norm of the first summand on the r.h.s. is6
constant(1+ |t |)1−ν ′ by the result of (i). The second summand may be rewritten in the
form

H0η(Q)(H + i)−1[η(Q)H1−Hη(Q)](H1+ i)−1U1
t fi

= H0η(Q)(H + i)−1[η(Q)H1−Hη(Q)]U1
t f
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so that by (49) the norm of this expression is bounded by constant(1 + |t |)−ν ′ . These
bounds may be used to estimate the second term on the l.h.s. of (47). �
Theorem. Let C be an admissible cone. Suppose that the potentialV satisfies (V1)–(V3)
with κ > 2

3 in (V1). Then (H1)–(H4) are satisfied for each vectorg of the formg = W+f
providedf ∈ Dρ(H1) for someρ > 2. For these vectorsg the limits in (16) exist and are
finite and equal.

Proof. We first prove (H1)–(H4) by using the following expression for the flux:

8O(Utg) = Re〈(I + P)η(Q)Utg, FO(I +H0)η(Q)Utg〉 (50)

whereO = 6a, 6R, 3a,R or ∂Ca,R. We shall justify (50) in part (iv) of the proof.
(i) We havef ∈ Hac(H1), so thatg = W+f ∈ Hac(H). To obtain (H1), it is enough to

observe thatE(x ∈ Ca,R)(H + i)−1 = E(x ∈ Ca,R)(H0+ 1)−1 · (H0+ 1)η(Q)(H + i)−1 is
the product of a compact and a bounded operator, hence compact (cf the proof of lemma 2).

(ii) The proof of (H2) is almost identical with that of lemma 3. By using (50) with
O = 6R, one obtains instead of (28) the inequality

|86R(Utg)| 6 50‖(I +H0)η(Q)(H + i)−1‖2‖(H + i)g‖2.

This is finite sinceg ∈ D(H). In (29) θR(Q) is replaced byθR(Q)η(Q), so that (30) must
be applied to vectors of the formη(Q)h with h ∈ D(H) (by (44) such vectors belong to
D(H0), hence also toD(Pj )).

(iii) For O = 6a or O = 3a,R we write

8O(Utg) = 8O(U1
t f )+ [8O(Utg)−8O(U1

t f )].

We know from the proof of lemma 4 (forO = 6a) and from the proof of proposition 3
(for O = 3a,R) that |8O(U1

t f )| 6 ct−µ for someµ > 1 if t > t0 > 0. Thus, to obtain
(H3) and (H4) it suffices to show that|8O(Utg)−8O(U1

t f )| 6 ct−µ for someµ > 1, all
t > t0 and some constantc independent ofO. To do this we write

δ8O(t) ≡ 8O(Utg)−8O(U1
t f )

= Re[〈(I + P)η(Q)Utg, FO(I +H0)η(Q)Utg〉
−〈(I + P)η(Q)2U1

t f, FO(I +H0)η(Q)
2U1

t f 〉]
= Re[〈(I + P)η(Q)(Utg − η(Q)U1

t f ), FO(I +H0)η(Q)
2U1

t f 〉
+〈(I + P)η(Q)Utg, FO(I +H0)η(Q)(Utg − η(Q)U1

t f )〉].
It follows (with ‖(I + P)(H0+ I )−1‖ < 5

4) that

|δ8O(t)| 6 5
4‖FO‖[‖(I +H0)η(Q)

2U1
t f ‖ + ‖(I + P)η(Q)Utg‖]

×‖(I +H0)η(Q)(Utg − η(Q)U1
t f )‖.

We have‖F6a‖ <∞, ‖F3a,R‖ 6 3‖03a‖2 <∞ and

‖(I +H0)η(Q)
2U1

t f ‖ 6 ‖(I +H0)η(Q)
2(H1+ i)−1‖‖(H1+ i)f ‖

‖(I + P)η(Q)Utg‖ 6 5
4‖(I +H0)η(Q)(H + i)−1‖‖(H + i)g‖.

Hence the inequality|δ8O(t)| 6 ct−µ follows as a consequence of lemma 9 (in which we
may chooseν ′ > 2).

(iv) The last statement of the theorem now follows from proposition 2 provided that
(12) holds, i.e. provided thatddt ‖E(x ∈ Ca,R)Utg‖2 = −8∂Ca,R (Utg) with 8O(Utg) given
by (50). If V3 = 0 we know from the results of section 3 (in particular (9), (11) and (13))
that this result holds, so the theorem is completely proven in this case.
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If V3 6= 0, the r.h.s. of (50) is finite (whereas the r.h.s. of (7), withf = Utg, need not
be defined becauseUtg need not belong toD(H0)). One still has (see (11))

d

dt
‖E(x ∈ Ca,R)Utg‖2 = i[ 〈E(x ∈ Ca,R)HUtg, Utg〉 − 〈Utg,E(x ∈ Ca,R)HUtg〉] (51)

since this result does not depend on the condition thatUtg ∈ D(H0). Now choose a real-
valued functionη1 of classC∞ such thatη1(x)η(x) = η(x) for all x ∈ R3 andη1(x) = 0 if
|x| < r0+ (a−r0)/10, and leth ∈ S(R3). Observe thatPj (∂jη)(Q)h = η1(Q)Pj (∂jη)(Q)h
and thatη(Q)Utg, η1(Q)Utg, (∂jη)(Q)Utg andη(Q)h belong toD(H) ∩D(H0) ∩D(V )
by (44). So

〈η(Q)HUtg, h〉 = 〈Utg,Hη(Q)h〉 = 〈Utg,H0η(Q)h+ V (Q)η(Q)h〉
= 〈Utg, η(Q)H0h+ (1η)(Q)h− 2iP · (∇η)(Q)h+ V (Q)η(Q)h〉
= 〈H0η(Q)Utg + (1η)(Q)Utg + 2i(∇η)(Q) · P η1(Q)Utg

+V (Q)η(Q)Utg, h〉.
Hence

η(Q)HUtg = [H0η(Q)+ (1η)(Q)+ 2i(∇η)(Q) · P η1(Q)+ V (Q)η(Q)]Utg
so that

E(x ∈ Ca,R)HUtg = E(x ∈ Ca,R)η(Q)HUtg
= E(x ∈ Ca,R)H0η(Q)Utg + V (Q)E(x ∈ Ca,R)Utg.

Substitution into (51) leads to

d

dt
‖E(x ∈ Ca,R)Utg‖2 = i[ 〈H0η(Q)Utg, E(x ∈ Ca,R)η(Q)Utg〉

−〈η(Q)Utg, E(x ∈ Ca,R)H0η(Q)Utg〉].
An application of lemma 1 confirms the validity of (12) with8∂Ca,R (Utg) as in (50). �
Remarks.

(a) It is clear that the Coulomb potentialsV (x) = λ|x|−1 are covered by the theorem
(take e.g.V1(x) = η(x)V (x) with η as before,V2 = V − V1 andV3 = 0).

(b) The theorem gives the validity of (16) for a dense set of vectorsg in the range
R(W+) of the relative wave operatorW+. In many situations, in particular ifV3 = 0, the
operatorW+ mapsHac(H1) onto Hac(H) (see for example [19–21]), so that (16) holds for
a dense set of vectorsg in Hac(H). However, ifV3 6= 0, R(W+) may be strictly smaller
thanHac(H). In this case one will have

Hac(H) = R(W+)⊕M+G (H) (52)

(see [18] for the short-range case). Ifg ∈ R(W+), then ‖E(|x| 6 a)Utg‖ → 0 as
t → +∞, hence limt→+∞ ‖E(x ∈ C)Utg‖2 = limR→∞

∫∞
T
86R(Utg) dt . The vectors

g in M+G (H) are absorbed by the singularities ofV3 on G as t → +∞, in particular
‖E(|x| > a)Utg‖ → 0 as t → +∞ for g ∈ M+G (H) [18]. So, if g ∈ Hac(H) is of the
form g = W+f ⊕ gG in the direct sum (52), withf ∈ Dρ(H1)(ρ > 2) andgG ∈M+G (H),
then

lim
t→+∞‖E(x ∈ Ca)Utg‖

2 = lim
t→+∞‖E(x ∈ Ca)UtW+f ‖

2 = lim
R→∞

∫ ∞
T

86R(UtW+f ) dt.

(c) Our results can be related to scattering theory. Consider the wave operators
�± = s − limt→±∞ eiHte−iH0te−iXt , with Xt = 0 if κ > 1 in (21) andXt =

∫ t
0 V1(2sP ) ds
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if 2
3 < κ 6 1, and letS = �∗+�− be the associated scattering operator. Iffin is an initial

state for scattering by the potentialV , then

lim
t→+∞‖E(x ∈ Ca)Ut�−fin‖2 =

∫
C

|(FSfin)(k)|2 d3k

(see e.g. [22, 1 Lemma 6.6, or 2 chapter 9.2];Fh denotes the Fourier transform ofh).
(d) Our results cover scattering by obstacles in the following sense. IfG is the surface

of a simply connected bounded setG in R3, for example a sphere, then there are self-adjoint
extensionsH of Ĥ that are decoupled byG [23], i.e.H = Hi ⊕ He in the representation
L2(G)⊕ L2(R3 \G) of H, and one may apply our theorem to vectors inHac(He).
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Appendix

Proof of proposition 1.
(i) We embedO in a shellGδ of thickness 2δ > 0. To do this, letOλ be the surface

obtained fromO by a displacement of lengthλ orthogonal toO, i.e.Oλ = {x ∈ R3|x =
y + λn(y),y ∈ O}, and letGδ = ∪−δ6λ6δOλ. If O = 6b, we takeδ = b/2; if O = Ok,
we chooseδ sufficiently small so that each vectorx in Gδ has a unique decomposition into
x = y + λn(y) with y ∈ O, λ ∈ [−δ, δ]. Throughout this proof it is understood thatx
andy are related in the preceding manner (so, asx varies overGδ, y andλ are functions
of x).

If dσλ(y) denotes the surface element onOλ at the pointy+λn(y) and dσ(y) ≡ dσ0(y)
the corresponding quantity onO, then there is a constantγ ∈ [1,∞) such that

1

γ
dσ(y) 6 dσλ(y) 6 γ dσ(y) ∀y ∈ O, ∀λ ∈ [−δ, δ]. (53)

(ii) Let f be as stated in the proposition andx ∈ Gδ. For ρ ∈ [0, 1], set

h(j)ρ (x) = (∂jf )(y + ρ(x− y)) = i(Pjf )(y + ρλn(y)). (54)

By Newton’s formula one has

f (x) = f (y)+
3∑

j=1

(xj − yj )
∫ 1

0
h(j)ρ (x) dρ. (55)

This implies that∫
O
|f (y)|2 dσ(y) = 1

2δ

∫ δ

−δ
dλ
∫
O
|f (y)|2 dσ(y) 6 γ

2δ

∫ δ

−δ
dλ
∫
O
|f (y)|2 dσλ(y)

6 2γ

2δ

∫
Gδ

|f (x)|2 d3x+ 2γ

2δ
δ2

3∑
j=1

∫
Gδ

d3x

∣∣∣∣ ∫ 1

0
h(j)ρ (x) dρ

∣∣∣∣2

6 γ

δ
‖f ‖2+ δγ

3∑
j=1

∥∥∥∥ ∫ 1

0
h(j)ρ dρ

∥∥∥∥2

L2(Gδ)

. (56)
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Now by the triangle inequality∥∥∥∥ ∫ 1

0
h(j)ρ dρ

∥∥∥∥
L2(Gδ)

6
∫ 1

0
‖h(j)ρ ‖L2(Gδ) dρ (57)

where (for 0< ρ 6 1, and by using (53)):

‖h(j)ρ ‖2
L2(Gδ)

=
∫ δ

−δ
dλ
∫
O

dσλ(y)|h(j)ρ (y + λn(y))|2

=
∫ δ

−δ
dλ
∫
O

dσλ(y)|(Pjf )(y + ρλn(y))|2

= 1

ρ

∫ ρδ

−ρδ
dµ
∫
O

dσµ/ρ(y)|(Pjf )(y + µn(y))|2

6 γ 2

ρ

∫ δ

−δ
dµ
∫
O

dσµ(y)|(Pjf )(y + µn(y))|2

= γ 2

ρ
‖Pjf ‖2

L2(Gδ)
. (58)

Together with (56) and (57), this implies that

‖f |O‖2
L2(O) 6

γ

δ
‖f ‖2+ δγ 3

[ ∫ 1

0
ρ−1/2 dρ

]2 3∑
j=1

‖Pjf ‖2. (59)

So (2) holds withϕ ≡ 1, with c = √γ ·max(δ−1/2, 2γ
√
δ). The result for generalϕ follows

immediately becausef |O = [ϕf ]|O. �
Proof of the estimate (5). TakeO = 6b in proposition 1, and letcb be a constant such that
(2) holds withc = cb in this case. We have seen after proposition 1 that‖06b‖ 6

√
2cb,

and from the above proof of proposition 1 we know thatcb 6
√
γb · max(δ−1/2, 2γb

√
δ),

whereγb > 1 is such that

1

γb
b2 6 (b + λ)2 6 γbb2 ∀λ ∈ [−δ, δ] (60)

(because dσλ(y) = (b + λ)2 sinθ dθ dϕ in spherical polar coordinates). Since we consider
only values ofb that are> 1, we may chooseδ = 1

4 (rather thanδ = b/2) in the proof
of proposition 1. Then (60) is satisfied for allb > 1 and allλ ∈ [− 1

4,
1
4] with γb = 2.

Since this number is independent ofb, we get a bound on‖06b‖ that does not depend on
b (explicitly ‖06b‖ 6 4; the estimate is not optimal). �
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